
Abstract. We propose a mathematical model for the
calculation of physical or chemical properties of in®nite
polymers, based on data for structurally closely related
®nite molecules. The modelling is phenomenological but
permits a physical interpretation of the parameters
involved in the equations.
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1 Introduction

Recently, RandicÂ et al. [1] presented a comparative study
of several families of large, structurally related ben-
zenoid hydrocarbons with increasing numbers of fused
benzene rings. They tried to determine how large a ®nite
molecule must be in order to model in®nite polymeric
structures and how terminal groups in¯uence local
properties in the central part of the molecule as it
approaches the limit of an in®nite system. Their main
concern was how to extract highly accurate limiting
values for certain molecular properties from limited data
on smaller members of the same family.

To obtain the limiting values several ®tting functions
were employed to model the properties in question, e.g.
the ratios R1=nK and R2=nK where R1 and R2 are the
counts of six- and ten-membered conjugated circuits in a
molecule, respectively, K is the number of KekuleÂ valence
structures in the molecule and n is the number of carbon
atoms. They studied how to ®t R1=nK and R2=nK, for
smaller members of the family, to certain functions in
order to extract the limiting values of those quantities
when the number of fused rings goes to in®nity. The most
successful function was that given as a polynomial ex-
pansion in inverse powers of N (the number of fused
benzene rings) which for R1=nK is given by

R1=nK � c0 � c1
N
� c2

N2
� c3

N 3
� � � � : �1�

For a third-degree polynomial ®t: c0 � 0:15647218, c1 �
0:00245947, c2 � ÿ0:00079578 and c3 � 0:00019747.

The limiting value of R1=nK, obtained when N !1 is
0.15647218, which can be compared to the exact value of
0.15647203. It was found that better accuracy could be
obtained by including higher powers of 1=N in Eq. (1).
In fact, a quintic polynomial in 1=N reproduces the exact
value before numerical oscillations a�ect the ®tting to
higher-degree polynomials. Several other procedures
were also tried, i.e. a geometric series and an orthogonal
curve ®tting [1].

In this article we present another phenomenological
model which accurately reproduces the limiting value of
R1=nK and whose parameters can be interpreted in terms
of contributions of the di�erent parts of the molecule.
The ®ttings were done by the Marquardt-Levenberg
method [2, 3]. Furthermore, a mathematical interpre-
tation of that model and of Eq. (1) in terms of PadeÂ
approximants is presented.

2 Expansion of R1=nK in inverse powers
of an e�ective N

In this section we modify Eq. (1) to obtain a better
convergence with fewer terms. Consider a new or
``e�ective'' number of fused benzene rings N given by

N � N ÿ a ; �2�

here a is the shift parameter to improve the convergence
properties of Eq. (1). It is obtained by forcing the
second-order term in the expansion of R1=nK in powers
of 1=N to vanish.

By rearranging Eq. (1) in terms of N , expanding in

inverse powers of N and retaining terms up to N
ÿ3

we
obtain

R1=nK � c0 � c1
N
� �c1aÿ c2�

N
2

� a2c1 ÿ 2ac2 � c3

N
3

� � � � : �3�

The shift parameter a can now be obtained by forcing
the coe�cient in N

ÿ2
to zero, i.e.
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a � c2
c1

: �4�

Thus, a good representation of R1=nK must be

R1=nK � c0 � c1
N ÿ c2

c1

� c3 ÿ c22=c1

N ÿ c2
c1

� �3 �5�

or, numerically, using Eq. (1)

R1=nK� 0:15647218� 0:00245947

N � 0:323558

ÿ 6:00106 10ÿ5

�N � 0:323558�3 : �6�

A direct ®tting of the ®rst 12 data points given in
Table 2 of [1] to Eq. (5) produces

R1=nK � 0:1564741� 0:0024388

N � 0:3119694
; �7�

with two terms, and

R1=nK � 0:1564742� 0:0024381

N � 0:3119694

� 1:2381843� 10ÿ6

�N � 0:3119694�3 �8�

with three terms.
It is seen that both Eq. (7), and Eq. (8) give excellent

results for the limiting value when N goes to in®nity as
well as giving a ®nite value when N goes to zero. Also, it
can be shown that Eq. (8) gives an excellent reproduc-
tion of the data for ®nite N .

One could ask why such a rearrangement of terms in
Eq. (1) into Eq. (5), or the direct ®tting to Eq. (5), gives
such excellent results. The reason has to do with the fact
that Eq. (5) e�ectively represents a resummation of
Eq. (1) and as such must be related to a PadeÂ approx-
imant of a certain order. The excellent numerical accu-
racy that can be obtained by representing a few terms of
a series by a low-order PadeÂ approximant is well known
[4]. To prove this let us construct a [1/1] PadeÂ approx-
imant for Eq. (1). This is given in [4] as

�1=1� � a0 � a1N
b0 � b1=N

: �9�

The coe�cients a0, a1, b0 and b1 are given in terms of c0,
c1 and c2 by a0 � c0, a1 � c1 ÿ c0c2=c1, b0 � 1 and
b1 � ÿc2=c1. Thus, Eq. (9) becomes

�1=1� � c0 � �c1 ÿ c0c2=c1��1=N�
1ÿ �c2=c1��1=N� ; �10�

or, numerically, using Eq. (1)

�1=1� � 0:15647218� 0:0530872=N
1� 0:323558=N

: �11�

It is easy to show that on keeping the ®rst two terms,
Eq. (5) is the same as Eq. (10). These results suggest that
it is better to ®t the data directly to PadeÂ approximants
instead of transforming the series in 1=N ®rst. A direct

®tting of the 12 data points for R1=nK in [1] to a [1/1]
PadeÂ approximant yields the following result

�1=1� � 0:1564741� 0:0512539=N
1� 0:3119690=N

: �12�

3 A physical interpretation

It is interesting to mention that Smittenberg and Mulder
[5] used an empirical function similar to Eq. (5) to
represent physical properties (refraction index, density,
etc.) of hydrocarbons belonging to a homologous series,
i.e.

x � x1 � k
n� z

; �13�
where x represents the physical constant of a hydrocar-
bon containing n carbon atoms, x1 is the limit of the
physical constant at an in®nite number of carbon atoms,
and k and z are empirical constants, characteristic for the
series. Later, Fortuin [6] derived a physical interpreta-
tion of k and z. In this study we adapt Fortuin's
argument and apply it to derive a physical interpretation
of the constants in Eq. (5). It will be evident from what
follows that the interpretation is based on the conversion
of the data to PadeÂ approximant functional forms.

R1=nK is the quotient of two molecular values, let us
call them p and q, and they depend linearly on N , the
number of repeating units in a ®nite molecule. Then

R1=nK � p
q
� Np1 � p0 � p0

Nq1 � q0 � q0

� p1=q1 � p0=q1
N � p0=q1

N

1� q0=q1
N � q0=q1

N

; �14�

where p0 and q0 denote the contributions by end groups,
p1 and q1 the contributions by the repeating unit, and p0
and q0 are the nonlinear contributions which become
negligible as higher terms of the series are considered.

From Eq. (14) we obtain

R1=nK � p1
q1
� p1

q1

p0�p0
p1
ÿ q0�q0

q1
q0�q0

q1
� N

: �15�

Now, let us make

p1
q1
� R11 ;

p0 � p0

p1
� a0 and

q0 � q0

q1
� b0 �16�

and substitute in Eq. (15) to obtain

R1 � R11 �
�a0 ÿ b0�R11

b0 � N
; �17�

where a0 and b0 represent the ratio of the contribution by
the end groups to the contribution of the repeating unit.
Equation (17) has the same form as Eq. (5).

Neglecting the nonlinear contributions p0 and q0, we
obtain from Eq. (17)

N � b
R0
1 ÿ R1

R1 ÿ R11
; �18�
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where

R0
1 �

p0
q0

: �19�

Thus, R0
1 is related to the end groups and R11 to the

repeating unit. Equation (18) shows that b can be
considered as the number of repeating units per molecule
of a polymer having a R1 of �R0

1 � R11 �=2. Using Eqs. (7)
and (19) we obtain R0

1 � 0:1642916, R11 � 0:1564741 and
b � 0:3119694.

4 Conclusions

In this work we have presented a formula which permits
the molecular properties of an in®nite polymer to be
obtained from a few known values for ®nite systems
composed of the same repeating unit. Benzenoid poly-
mers were studied using data recently published by
RandicÂ et al. [1]. They showed that for large systems an
expansion in powers of 1=N , where N is the number of
the repeating unit, parallels the mixed power-geometric
expansion, which is the natural expansion in the
calculation of the conjugated-circuit resonance energy
per electron. However, in the study of other properties
such as melting point, viscosity, etc., we do not know the
analytical dependence. Thus, an expansion in inverse
powers of an e�ective number of repeating units, such as
the one introduced in this article, could prove useful for
the determination of properties of in®nite systems,
starting from a few known values for ®nite systems.

Our approach, based on PadeÂ approximants, also
clari®es some previous ®ndings in the literature. Indeed,

the molecular interpretation given by Fortuin of the
formula introduced by Smittenberg and Mulder,
Eq. (13) in the present paper, can now be understood
simply as a resummation of an expansion of a molecular
property of a large system in inverse powers of the
number of repeating units of the system.

We think that our results are important for the study
of other properties of polymers because even though we
are dealing with phenomenological modelling, a physical
interpretation of the terms involved in the equations can
be given. In the case of experimentally determined values
of physical constants, the use of the so-called statistical
PadeÂ approximants [7] should prove to be more suitable
to represent the dependence of physical quantities of
large polymers on inverse powers of the number of re-
peating units.
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